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Let a,b € R with a < b. A partition of [a,b] is a finite set {¢o,¢1,...,t,} with
a=tg<t;<---<t,=hb

Let N(a,b) denote the set of all partitions of [a,b]. Note that this set is
partially ordered by inclusion. If P,@Q € N(a,b) and P C @, we say that @ is a
refinement of P.

Let f : [a,b] — R be a bounded function and let P = {xq,...,z,} be a
partition of [a, b]. Set

My (P,i) =sup{f(z) | x € [zi—1,2;]} and mys(Pi) =inf{f(x) |z € [x;—1,xi]}}.

The upper Rieman sum of f with respect P is
Uf(P) = iMf(P,Z)(l‘l — $i71)7
i=1
and the lower Rieman sum of f with respect to P is
Ly(P) = zn:mf(Pai)(ffi — 1)
i=1

Since f is bounded, there exist m, M € R with m < M such that f(z) €
[m, M] for every x € [a,b]. Thus
m(b—a) < Lg(P) <Uy(P) < M(b—a).
Moreover, if ) is a refinement of P, then
Li(P) < Ly(Q) <Up(Q) < Uy (P).

The upper Riemann integral of f is
—b
/ fdx =inf{Us(P) | P € N(a,b)},
a

and the lower Riemann integral of f is
b
/ fdx =sup{L;(P)| P € N(a,b)}.

Note that the upper and lower Riemann integrals exist for any bounded function;
in fact, if f(x) € [m, M] for every x € [a, ], then

b —b
m(bfa)g/fdxg/fdng(bfa).

—a
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We say that f is Riemann integrable on [a, b] if f;f dx = faf dx. The common

value is called the Riemann integral, and is denotedby ff fdz.

The adjective Riemann precedes the word integrable because there are other
sorts of integrals which are of as much or more importance to theoretical math-
ematics as the Riemann integral. Predominant among these is the Lebesque
integral, which is defined by splitting up the range of the function f instead
of its domain. However, we will not study Lebesque integrable functions, and
the modifier Riemann becomes superfluous for us. Thus we will call a Riemann
integrable function simply integrable.

Proposition 1. Let f : [a,b] — R be bounded. Then the following conditions
are equivalent:

(a) f is integrable on [a,b];

b

(b) [, fdw— [ fdz=0;

(¢) mf{U;(P) = L;(P) | P € N(a,b)} = 0;

(d) Ve> 03P € N(a,b) 3 Us(P) — Ly(P) <.
Proof. Tt is obvious that (a) is equivalent to (b). Also, that (c) implies (d)
is clear. That (d) implies (c) follows immediately from the fact that Uy (P) >
Ly (P) for every P € N(a,b).

Suppose that f is integrable on [a,b], and set I = f; f dz, that is,

sup{L;(P) | P € N(a,b)} =1 =inf{Us(P) | P € N(a,b)}.

Let € > 0. Then there exist partitions P; and P of [a, b] such that

€ €
Uf(Pl) — 5 <I< Lf(Pz) + 5

Let P = P; U Py; then P is a common refinement of P; and P, and
Up(P) = 5 <Us(P) = 5 < I < Ly(P)+ 5 < Ly(P) + 5.
This implies that
Up(P) = Ly (P) <,
which shows that (a) implies (d).
Now suppose that condition (d) holds. Let ¢ > 0, and let P € N(a,b)

—b
such that U(P) — Ly(P) < e. Now [, fdx < Up(P), and [°fdx > Ls(P).
Subtracting these inequalities yields

Og/fd:c—/fdeUf(P)—Lf(P)<6.

Since € is arbitrary, this proves (b). O



3

Example 1. Let f : [0,1] — R be defined by f(z) = z. Let P = {zo,...,zn}
be any partition of [0, 1]. Then

Uf(P):in(xi_xifl) and Lf(P)ZZa?i,l(xi—xi,l)

Then

n n

Up(P) = Ly(P) = [wi(ws — wim1) — w1 (s — 1)) = (w5 — 2i1)”.

i=1 i=1
Let € > 0 and let n be so large that n > 1. Define a partition P by P = {£ |
k=0,...,n}. Then

n

Up(P) = Lf(P) =)

=1

1 1 <
—=—<e
n? n
By the previous proposition, f is integrable.
Example 2. Let f:[0,1] — R be defined by
1 if x is rational;
fz) = {

0 if x is irrational.
Let P = {zg,...,%,} be any partition of [0, 1]. Then for every ¢, M;(P,i) =1
and myg(P,i) = 0, so Us(P) = 1 and L¢(P) = 0. Therefore T;fdx =1 and
Ll)f dz = 0, so f is not integrable.
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Example 3. Define ¢: Q — ZT by
g(x) =min{be Z* |z = % for some a € Z}.
Let f:[0,1] — R be defined by
1 e . )
={
Since every interval contains an irrational number, it is clear that i ; fdx=0.

Therefore, if f is integrable, we would have fab fdx = 0. We wish to show
that the upper Riemann integral is zero.

Let € > 0. We construct a partition P of [0,1] such that Uy(P) < e.

There are only finitely many rational numbers ¢ € (0,1) such that —~ >

am 2 5
let {t1,...,tm} be the set of such numbers, with ¢; < ¢;41. Set
h = (min{t; 1 — t;} U {%, 1—tm})/2.

Then the intervals of the form [¢;,t; + h| are disjoint. Set xg = 0 and zgmm4+1 = 1,
and for i = 1, cee,Mmy set xo;_1 = ti and To; = ti + h.

Set n =2m + 1. Now P = {xg,21,...,2,} is a partition of [0,1]. For i odd,
then My (P,i) < §. For i even, then (z; —x;_1) < 5%. Thus

Us(P) = 3 My(Pi)(w; — i)

= ZMf(P’ z)(xz — .’L‘i_l) + Z Mf(PJ)(.’IJi — xi_l)

odd even

€ .
<3 D (@i —wioa) +h Y My(Pi)

odd even

<S4n

- m

2
< € + €
-2 2

= €.
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Let f : [a,b] — R. We say that f is increasing on [a, b] if for every x1,z2 € [a,b]
with 1 < 22, we have f(z1) < f(z2).

Proposition 2. Let f : [a,b] — R be increasing. Then f is integrable on [a,b].

Proof. Since f is increasing, f(x) € [f(a), f(b)] for every x € [a,b]. In particular,
f is bounded. Set B = f(b) — f(a).

Let P = {xo,...,z,} be any partition of [a,b]. Since f is increasing, we have
My(p,i) = max{f(z) | © € [r-1, 2]} = f(w5), and mg(P,T) = min{ f(2) | = €
[zi—1,2i]} = f(x;-1). Then

Us(P) = Zf(xz‘)(%‘ —xi—1) and Ly(P)= Zf(ﬂfi—l)(xi —Ti-1),

so Up(P) — Ly(P) = 3211 (f (i) — f(zi-1))(@; — wi-1).
Let € > 0, and let &k = 5% so that 0 < kB < e. Choose a partition P =
{zg,z1,...,2,} such that ; — x;—1 < k. Then

Up(P) = Ly(P) <> (f(w:) = flwio1))k

i=1

=k (fzi) = f(zim1))
i=1

=kM <e.
Thus f is integrable. O
Proposition 3. Let f : [a,b] — R be continuous. Then f is integrable on [a,b)].

Proof. Let € > 0; we wish to find a partition P such that Uy(P) — Lf(P) < €).

Since f is continuous and [a,b] is compact, the image is also compact, and
in particular, f is bounded on [a,b]. Moreover, f is uniformly continuous on
[a,b], so there exists ¢ > 0 such that if z,y € [a,b] and |x — y| < ¢, then
@) — 1) < 5.

Let P = {x¢,1,...,2,} be any partition of [a,b] such that |z; — x;—_1| < d.
There exist s;,t; € [zi—1,x;] such that f(s;) = my(P,i) and f(t;) = Ms(P,1i).
Since |s; — t;| < 8, we have |f(t;) — f(si)| < €/(b—a). Thus

n

Usp(P) = Ly(P) = (f(t:) = f(s:) (i — 1)

Thus f is integrable. O
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